博客
关于我
React 学习笔记 —— Fragment
阅读量:563 次
发布时间:2019-03-09

本文共 1074 字,大约阅读时间需要 3 分钟。

Handling Multiple Roots in React JSX

In React's JSX syntax, it's essential to use a single root tag. To avoid unnecessary extra div tags and hierarchical structures, we can use two main approaches.

Fragment Approach

The Fragment component is designed to be ignored in rendering. It allows embedding multiple root components without adding extra DOM nodes to the tree. Perfect for when you need to #[key] your fragments. If you have loops and dynamic content, specify the key attribute for each fragment is crucial.

Example:

import {Fragment} from 'react';
...
test
test

Empty Tag Approach

Using empty tags is another great way to embed multiple root nodes without creating real DOM elements. They don’t accept any attributes since they’re meant purely for embedding HTML.

Example:

...
test
test

The key difference between Empty Tags and Fragments is that Fragments can only accept **key** attribute, which is important when you're dealing with list-like structures. However, Empty Tags have no such limitations and are often used for simple content embedding.

转载地址:http://ajxpz.baihongyu.com/

你可能感兴趣的文章
Objective-C实现average mode平均模式算法(附完整源码)
查看>>
Objective-C实现avl 树算法(附完整源码)
查看>>
Objective-C实现AvlTree树算法(附完整源码)
查看>>
Objective-C实现backtracking Jump Game回溯跳跃游戏算法(附完整源码)
查看>>
Objective-C实现BACKTRACKING 方法查找集合的幂集算法(附完整源码)
查看>>
Objective-C实现bailey borwein plouffe算法(附完整源码)
查看>>
Objective-C实现balanced parentheses平衡括号表达式算法(附完整源码)
查看>>
Objective-C实现base64加密和base64解密算法(附完整源码)
查看>>
Objective-C实现base64加解密(附完整源码)
查看>>
Objective-C实现base64编码 (附完整源码)
查看>>
Objective-C实现base85 编码算法(附完整源码)
查看>>
Objective-C实现basic graphs基本图算法(附完整源码)
查看>>
Objective-C实现BCC校验计算(附完整源码)
查看>>
Objective-C实现bead sort珠排序算法(附完整源码)
查看>>
Objective-C实现BeadSort珠排序算法(附完整源码)
查看>>
Objective-C实现bellman ford贝尔曼福特算法(附完整源码)
查看>>
Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bellmanFord贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现BellmanFord贝尔曼-福特算法(附完整源码)
查看>>